New antibiotic-infused cement for bones created to combat infections

BOSTON — A new antibiotic-infused cement for bones has been created to combat infections and could revolutionize hip and knee replacements. The new “highly effective” medicine promises to get to the core of bacterial bone infections and proves potent against antibiotic-resistant strains.

Researchers from Brigham and Women’s Hospital say the medicinal cement precisely targets the infection site and delivers the antibiotic to the bone tissue through the bone cement. Common antibiotics don’t precisely target infections, which means huge doses are necessary, in turn creating drug resistance and destroying beneficial bacteria.

Preventing antibiotic resistance is an increasingly important problem to tackle. Because of the world’s aging population more and more people are having knee and hip replacements, which can result in bacterial infections such as Staphylococcal — currently treated with regular antibiotics.

The new antibiotic, developed by Brigham and Women’s Hospital, trumps all the antibiotic-loaded bone cements used against Staphylococcal in a rat model.

“Currently, the Food and Drug Administration (FDA) has only approved of bone cements loaded with antibiotics not originally developed for bone tissue,” says Hae Lin Jang, PhD, co-director of the Brigham’s Center for Engineered Therapeutics and principal investigator of the Laboratory for Developing Advanced Biomaterials and Biotechnologies, in a university release.

“In addition to not being bone tissue-specific, resistance has emerged against these antibiotics. We must create a new generation of antibiotics that are optimized to meet this emerging need.”

How did scientists create the cement?

The team announced shortlisted molecules to design the antibiotics and maximize drug resistance and settled on the dual-action antibiotic VCD-077. It maintains the stability of the bone cement while being highly effective against drug-resistant bacteria strands, slowing the development of future resistance.

However, before it is found in clinics, the team has to confront two major limitations: rat models versus humans, and necessary toxicity studies. Nonetheless, they think the future is bright for tissue-specific localized treatment, such as bone infections that minimize invasiveness.

By focusing on tissue-specific antibiotics from the outset, they are on the right track to create a medicine that tackles bacterial infection precisely without producing drug resistance.

“The future lies in mixing artificial intelligence and drug discovery to make developing new antibiotics more efficient and cost-effective than ever before,” says co-corresponding author Shiladitya Sengupta, PhD, co-director of the Brigham’s Center for Engineered Therapeutics. “Interdisciplinarity in our approach and specificity in our drug development will truly bring about a new medical engineering paradigm.”

“Treatment may be getting more complicated, and bacteria may be getting more sophisticated, but us biomedical engineers are getting more sophisticated, too.”

The findings are published in the journal Nature Biomedical Engineering.

South West News Service writer Pol Allingham contributed to this report.

YouTube video